Resolving the soluble-to-toxic transformation of amyloidogenic proteins: A method to assess intervention by small-molecules

Res Sq [Preprint]. 2023 Mar 6:rs.3.rs-2631727. doi: 10.21203/rs.3.rs-2631727/v1.

Abstract

The soluble-to-toxic transformation of intrinsically disordered amyloidogenic proteins such as amyloid beta (Aβ), α-synuclein, mutant Huntingtin Protein (mHTT) and islet amyloid polypeptide (IAPP) among others is associated with disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and Type 2 Diabetes (T2D), respectively. Conversely, the dissolution of mature fibrils and toxic amyloidogenic intermediates including oligomers remains the holy grail in the treatment of neurodegenerative disorders. Yet, methods to effectively, and quantitatively, report on the interconversion between amyloid monomers, oligomers and mature fibrils fall short. For the first time, we describe the use of gel electrophoresis to address the transformation between soluble monomeric amyloid proteins and mature amyloid fibrils. The technique permits rapid, inexpensive and quantitative assessment of the fraction of amyloid monomers that form intermediates and mature fibrils. In addition, the method facilitates the screening of small molecules that disintegrate oligomers and fibrils into monomers or retain amyloid proteins in their monomeric forms. Importantly, our methodological advance diminishes major existing barriers associated with existing (alternative) techniques to evaluate fibril formation and intervention.

Keywords: amyloid proteins; gel electrophoresis; soluble-to-toxic conversion.

Publication types

  • Preprint