Silver nanoparticles affect wheat (Triticum aestivum L.) germination, seedling blight and yield

Funct Plant Biol. 2023 May;50(5):390-406. doi: 10.1071/FP22086.

Abstract

The aim of the study was to evaluate the effect of two types of negatively charged quasi-spherical silver nanoparticles (AgNPs) at concentrations of 10, 20 and 30mgL-1 and silver ions at a concentration of 30mgL-1 on the growth, selected physiological aspects and yielding of wheat (Triticum aestivum L.) cv. Tybalt, and on plant resistance to seedling blight. Seed germination, α-amylase activity in seeds, morphology and infestation of seedlings by pathogens were assessed in a hydroponic treatment. Growth rate, PSII efficiency, heading and yield of the same plants were then analysed in pot culture. Results showed that the AgNPs and silver ions had a negative effect on roots, but reduced seedling blight and improved leaf area compared to the control. In addition, the AgNPs reduced with sodium borohydride in the presence of trisodium citrate at concentrations of 10 and 20mgL-1 stimulated germination, α-amylase activity and shoot length, which was not observed in the case of silver ions and the AgNPs reduced with sodium hypophosphite in the presence of sodium hexametaphosphate. In a pot experiment, the AgNPs improved plant growth, PSII efficiency, accelerated heading and increased yield-related parameters compared with the control. Results revealed the interaction strength in the following order: TCSB-AgNPs>SHSH-AgNPs>silver ions. TCSB-AgNPs in the lowest concentration had the most favourable effect, indicating their great potential for use in improving wheat cultivation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Germination
  • Metal Nanoparticles*
  • Plants
  • Seedlings*
  • Silver / pharmacology
  • Triticum
  • alpha-Amylases / pharmacology

Substances

  • Silver
  • alpha-Amylases