Pseudohexagonal Nb2O5 Anodes for Fast-Charging Potassium-Ion Batteries

ACS Appl Mater Interfaces. 2023 Apr 5;15(13):16664-16672. doi: 10.1021/acsami.2c21490. Epub 2023 Mar 21.

Abstract

High-rate batteries will play a vital role in future energy storage systems, yet while good progress is being made in the development of high-rate lithium-ion batteries, there is less progress with post-lithium-ion chemistry. In this study, we demonstrate that pseudohexagonal Nb2O5(TT-Nb2O5) can offer a high specific capacity (179 mAh g-1 ∼ 0.3C), good lifetime, and an excellent rate performance (72 mAh g-1 at ∼15C) in potassium-ion batteries (KIBs), when it is composited with a highly conductive carbon framework; this is the first reported investigation of TT-Nb2O5 for KIBs. Specifically, multiwalled carbon nanotubes are strongly tethered to Nb2O5 via glucose-derived carbon (Nb2O5@CNT) by a one-step hydrothermal method, which results in highly conductive and porous needle-like structures. This work therefore offers a route for the scalable production of a viable KIB anode material and hence improves the feasibility of fast-charging KIBs for future applications.

Keywords: KIB; PIB; battery anode; carbon nanomaterials; niobium oxide; potassium-ion batteries.