Aggregates of Ionic-Bonds Coupled Polymer and Their Photosensitization Enhancement Effect

Small. 2023 Jun;19(26):e2208052. doi: 10.1002/smll.202208052. Epub 2023 Mar 21.

Abstract

The formation of nanoaggregates makes a great difference to the improvement of photodynamic therapy (PDT) performance to some extent, but constructing stable aggregates with a clear structure is simultaneously a big challenge for us. Herein, just by electrostatic interaction, cationic 2PAHs and anionic FBA351, regarded as acceptor (A) and donor (D), respectively, are utilized to prepare stable aggregate of ionic-bonds coupled polymer (ICP) with repeated "D-A" structure, which is fully characterized by nuclear magnetic resonance (NMR), time-of-flight mass spectrometry, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Remarkably, aggregate ICP with multiple "D-A" structures showed enhanced photosensitization efficiency over its precursor 2PAHs and FBA351, which is in accord with the image-guided photodynamic anticancer therapy. Such results not only offer a simple way to obtain stable aggregate but also give us a guideline to design efficient photosensitizers.

Keywords: D-A effect; aggregate materials; electrostatic interaction; photodynamic therapy; photosensitization effect.