The distribution of submerged macrophytes in response to intense solar radiation and salinity reveals hydrogen peroxide as an abiotic stress indicator

Sci Rep. 2023 Mar 20;13(1):4548. doi: 10.1038/s41598-023-30487-1.

Abstract

The feasible condition for submerged macrophyte growth is hard to understand as many environmental factors contribute to establishing macrophyte distribution with different intensities generating excess reactive oxygen species (ROS). Among various kinds of ROS, hydrogen peroxide (H2O2) is relatively stable and can be measured accurately. Thus, for the quantification of submerged macrophyte species, H2O2 can be used to evaluate their distribution in a lake. Submerged macrophytes, such as Potamogeton anguillanus, were abundant in Lake Shinji. The largest biomass distribution was around 1.35 m deep, under low solar radiation intensity, and nearly no biomass was found less than 0.3 m deep, where solar radiation was high. Tissue H2O2 concentrations varied in response to the diurnal photosynthetically active radiation (PAR) intensity, which was followed by antioxidant activities, though slightly delayed. Laboratory experiments were conducted with different PAR intensities or salinity concentrations. A stable level of H2O2 was maintained up to about 200 μmol m-2 s-1 of PAR for 30 days, followed by a gradual increase as PAR increased. The H2O2 concentration increased with higher salinity. A change in Chlorophyll a (Chl-a) concentration is associated with an altering H2O2 concentration, following a unique negative relationship with H2O2 concentration. If H2O2 exceeded 45 μmol/gFW, the homeostasis collapsed, and H2O2 and Chl-a significantly declined afterward. The above findings indicate that H2O2 has a negative effect on the physiological condition of the plant. The increase in H2O2 concentration was prevented by antioxidant activities, which elevated with increasing H2O2 concentration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antioxidants*
  • Chlorophyll A
  • Hydrogen Peroxide*
  • Reactive Oxygen Species
  • Salinity
  • Stress, Physiological

Substances

  • Antioxidants
  • Hydrogen Peroxide
  • Reactive Oxygen Species
  • Chlorophyll A