Age and walking conditions differently affect domains of gait

Hum Mov Sci. 2023 Jun:89:103075. doi: 10.1016/j.humov.2023.103075. Epub 2023 Mar 20.

Abstract

Introduction: Analysing gait in controlled conditions that resemble daily life walking could overcome the limitations associated with gait analysis in uncontrolled real-world conditions. Such analyses could potentially aid the identification of a walking condition that magnifies age-differences in gait. Therefore, the aim of the current study was to determine the effects of age and walking conditions on gait performance.

Methods: Trunk accelerations of young (n = 27, age: 21.6) and older adults (n = 26, age: 68.9) were recorded for 3 min in four conditions: walking up and down a university hallway on a track of 10 m; walking on a specified path, including turns, in a university hallway; walking outside on a specified path on a pavement including turns; and walking on a treadmill. Factor analysis was used to reduce 27 computed gait measures to five independent gait domains. A multivariate analysis of variance was used to examine the effects of age and walking condition on these gait domains.

Results: Factor analysis yielded 5 gait domains: variability, pace, stability, time & frequency, complexity, explaining 64% of the variance in 27 gait outcomes. Walking conditions affected all gait domains (p < 0.01) but age only affected the time & frequency domain (p < 0.05). Age and walking conditions differently affected the domains variability, stability, time & frequency. The largest age-differences occurred mainly during straight walking in a hallway (variability: 31% higher in older adults), or during treadmill walking (stability: 224% higher, time&frequency: 120% lower in older adults).

Conclusion: Walking conditions affect all domains of gait independent of age. Treadmill walking and walking on a straight path in a hallway, were the most constrained walking conditions in terms of limited possibilities to adjust step characteristics. The age by condition interaction suggests that for the gait domains variability, stability, and time & frequency, the most constrained walking conditions seem to magnify the age-differences in gait.

Keywords: Aging; Factor analysis; Gait; Indoor and outdoor conditions; Treadmill.

MeSH terms

  • Adult
  • Aged
  • Exercise Test
  • Gait Analysis
  • Gait*
  • Humans
  • Multivariate Analysis
  • Walking Speed
  • Walking*
  • Young Adult