Interface engineering of CeO2 nanoparticle/Bi2WO6 nanosheet nanohybrids with oxygen vacancies for oxygen evolution reactions under alkaline conditions

RSC Adv. 2023 Mar 16;13(13):8873-8881. doi: 10.1039/d2ra08273j. eCollection 2023 Mar 14.

Abstract

Because of the interactive combination synergy effect, hetero interface engineering is used way for advancing electrocatalytic activity and durability. In this study, we demonstrate that a CeO2/Bi2WO6 heterostructure is synthesized by a hydrothermal method. Electrochemical measurement results indicate that CeO2/Bi2WO6 displays not only more OER catalytic active sites with an overpotential of 390 mV and a Tafel slope of 117 mV dec-1 but also durability for 10 h (97.57%). Such outstanding characteristics are primarily attributed to (1) the considerable activities by CeO2 nanoparticles uniformly distributed on Bi2WO6 nanosheets and (2) the plentiful Bi-O-Ce and W-O-Ce species playing the role of strong couples between CeO2 nanoparticles and Bi2WO6 nanosheets and oxygen vacancy existence in CeO2 nanoparticles, which can improve the electrochemical active surface area (ECSA) and activity, and enhance the conductivity for OERs. This CeO2/Bi2WO6 consists of the heterojunction engineering that can open a modern method of thinking for high effective OER electrocatalysts.