Exosomal miR‑152‑5p/ARHGAP6/ROCK axis regulates apoptosis and fibrosis in cardiomyocytes

Exp Ther Med. 2023 Feb 28;25(4):165. doi: 10.3892/etm.2023.11864. eCollection 2023 Apr.

Abstract

Acute myocardial infarction (AMI) is a fatal cardiovascular disease with a high mortality rate. The discovery of effective biomarkers is crucial for the diagnosis and treatment of AMI. In the present study, miRNA sequencing and reverse transcription-quantitative polymerase chain reaction techniques revealed that the expression of exosome derived miR-152-5p was significantly downregulated in patients with AMI compared with healthy controls. A series of functional validation experiments were then performed using H9c2 cardiomyocytes. Following transfection of the cardiomyocytes using an miR-152-5p inhibitor, immunofluorescence staining of a-smooth muscle actin revealed a marked increase in fibrosis. Western blotting revealed that the expression levels of the apoptotic protein Bax, TNF-α and collagen-associated proteins were significantly increased, whereas those of the apoptosis-inhibiting factor Bcl-2 and vascular endothelial growth factor A were significantly decreased. Furthermore, the binding of Rho GTPase-activating protein 6 (ARHGAP6) to miR-152-5p was predicted using an online database and verified using a dual-luciferase reporter gene assay. The transfection of cardiomyocytes with miR-152-5p mimics was found to inhibit the activation of ARHGAP6 and Rho-associated coiled-coil containing kinase 2 (ROCK2). These results suggest that miR-152-5p targets ARHGAP6 through the ROCK signaling pathway to inhibit AMI, which implies that miR-152-5p may be a diagnostic indicator and potential target for treatment of myocardial infarction.

Keywords: ARHGAP6; ROCK signaling pathway; acute myocardial infarction; cardiomyocyte apoptosis; miR-152-5p.

Grants and funding

Funding: This study was supported by Shenzhen Science and Technology Innovation Commission Fund (reference nos. JCYJ20180302144649363 and JCYJ20220530141815035) and Healthy Science and technology project of Nanshan District (reference nos. NS2022062 and NS2020016).