A comprehensive quantitative bottom-up analysis of fiber-reinforced recycled-aggregate concrete behavior

Sci Rep. 2023 Mar 18;13(1):4502. doi: 10.1038/s41598-023-31646-0.

Abstract

This study provides a more profound understanding of the influence of the phases of fiber-reinforced recycled-aggregate concrete (FRRAC), on its elastic properties, in particular Young's modulus and Poisson's ratio. Multi-scale modeling analyses of mortar and FRRAC were conducted to assess the effect of variations in the fiber content, fiber elastic modulus, RA content, and water-to-cement ratio (w/c) on the elastic properties at each scale. Thus, the analytic Mori-Tanaka (MT) homogenization algorithm developed in Python programming language and the three-dimensional finite element (FE) homogenization scheme were applied to evaluate the elastic properties of FRRAC. As such, different fiber types including steel, basalt, glass, and propylene, at a volume fraction range of 0-2%, along with the variations in fiber elastic modulus, and different RA replacement levels ranging from 0 to 100% were incorporated in the modeling process at different w/c ratio. Based on the results, the Poisson's ratio of steel FRRAC in the MT approach surges with increasing fiber content. Furthermore, the elastic modulus of FRRAC is highly susceptible to an increase in Young's modulus of polypropylene fiber, among other fiber types. The elastic modulus of concrete experiences a sharp decrease with increasing w/c for all fiber types in both FE and MT approaches.