Wafer-scale integration of GaAs/AlGaAs core-shell nanowires on silicon by the single process of self-catalyzed molecular beam epitaxy

Nanoscale Adv. 2023 Jan 23;5(6):1651-1663. doi: 10.1039/d2na00848c. eCollection 2023 Mar 14.

Abstract

GaAs/AlGaAs core-shell nanowires, typically having 250 nm diameter and 6 μm length, were grown on 2-inch Si wafers by the single process of molecular beam epitaxy using constituent Ga-induced self-catalysed vapor-liquid-solid growth. The growth was carried out without specific pre-treatment such as film deposition, patterning, and etching. The outermost Al-rich AlGaAs shells form a native oxide surface protection layer, which provides efficient passivation with elongated carrier lifetime. The 2-inch Si substrate sample exhibits a dark-colored feature due to the light absorption of the nanowires where the reflectance in the visible wavelengths is less than 2%. Homogeneous and optically luminescent and adsorptive GaAs-related core-shell nanowires were prepared over the wafer, showing the prospect for large-volume III-V heterostructure devices available with this approach as complementary device technologies for integration with silicon.