Seasonal, environmental and individual effects on hypoxia tolerance of eastern sand darter (Ammocrypta pellucida)

Conserv Physiol. 2023 Mar 13;11(1):coad008. doi: 10.1093/conphys/coad008. eCollection 2023.

Abstract

Metabolic rate and hypoxia tolerance are highly variable among individual fish in a stable environment. Understanding the variability of these measures in wild fish populations is critical for assessing adaptive potential and determining local extinction risks as a result of climate-induced fluctuations in temperature and hypoxic conditions. We assessed the field metabolic rate (FMR) and two hypoxia tolerance metrics, oxygen pressure at loss of equilibrium (PO2 at LOE) and critical oxygen tolerance (Pcrit) of wild-captured eastern sand darter (Ammocrypta pellucida), a threatened species in Canada, using field trials (June to October) that encompassed ambient water temperatures and oxygen conditions typically experienced by the species. Temperature was significantly and positively related to hypoxia tolerance but not FMR. Temperature alone explained 1%, 31% and 7% of the variability observed in FMR, LOE, and Pcrit, respectively. Environmental and fish-specific factors such as reproductive season and condition explained much of the residual variation. Reproductive season significantly affected FMR by increasing it by 159-176% over the tested temperature range. Further understanding the impact of reproductive season on metabolic rate over a temperature range is crucial for understanding how climate change could impact species fitness. Among-individual variation in FMR significantly increased with temperature while among-individual variation in both hypoxia tolerance metrics did not. A large degree of variation in FMR in the summer might allow for evolutionary rescue with increasing mean and variance of global temperatures. Findings suggest that temperature may be a weak predictor in a field setting where biotic and abiotic factors can act concurrently on variables that affect physiological tolerance.

Keywords: conservation physiology; field metabolic rate; individual variation; oxygen tolerance; seasonal variation; species at risk.