Tumor plasticity and therapeutic resistance in oncogene-addicted non-small cell lung cancer: from preclinical observations to clinical implications

Crit Rev Oncol Hematol. 2023 Apr:184:103966. doi: 10.1016/j.critrevonc.2023.103966. Epub 2023 Mar 15.

Abstract

The identification of actionable targets in oncogene-addicted non-small cell lung cancer (NSCLC) has fueled biomarker-directed strategies, especially in advanced stage disease. Despite the undeniable success of molecular targeted therapies, duration of clinical response is relatively short-lived. While extraordinary efforts have defined the complexity of tumor architecture and clonal evolution at the genetic level, not equal interest has been given to the dynamic mechanisms of phenotypic adaptation engaged by cancer during treatment. At the clinical level, molecular targeted therapy of EGFR-mutant and ALK-rearranged tumors often results in epithelial-to-mesenchymal transition (EMT) and histological transformation of the original adenocarcinoma without the acquisition of additional genetic lesions, thus limiting subsequent therapeutic options and patient outcome. Here we provide an overview of the current understanding of the genetic and non-genetic molecular circuits governing this phenomenon, presenting current strategies and potentially innovative therapeutic approaches to interfere with lung cancer cell plasticity.

Keywords: Drug resistance; Molecular therapies; Non-small cell lung cancer (NSCLC); Phenotypic plasticity.

Publication types

  • Review

MeSH terms

  • Antineoplastic Agents* / therapeutic use
  • Carcinoma, Non-Small-Cell Lung* / drug therapy
  • Carcinoma, Non-Small-Cell Lung* / genetics
  • Carcinoma, Non-Small-Cell Lung* / pathology
  • Drug Resistance, Neoplasm / genetics
  • Humans
  • Lung Neoplasms* / drug therapy
  • Lung Neoplasms* / genetics
  • Lung Neoplasms* / pathology
  • Mutation
  • Oncogenes
  • Protein Kinase Inhibitors / therapeutic use

Substances

  • Antineoplastic Agents
  • Protein Kinase Inhibitors