The effects of long-term hexabromocyclododecanes contamination on microbial communities in the microcosms

Chemosphere. 2023 Jun:325:138412. doi: 10.1016/j.chemosphere.2023.138412. Epub 2023 Mar 14.

Abstract

The adaptation of microbial community to the long-term contamination of hexabromocyclododecanes (HBCDs) has not been well studied. Our previous study found that the HBCDs contamination in the microcosms constructed of sediments from two different mangrove forests in 8 months resulted in serious acidification (pH2-3). This study reanalyzed previous sequencing data and compared them with data after 20 months to investigate the adaptive properties of microbial communities in the stress of HBCDs and acidification. It hypothesized that the reassembly was based on the fitness of taxa. The results indicated that eukaryotes and fungi might have better adaptive capacity to these deteriorated habitats. Eukaryotic taxa Eufallia and Syncystis, and fungal taxa Wickerhamomyces were only detected after 20 months of contamination. Moreover, eukaryotic taxa Caloneis and Nitzschia, and fungal taxa Talaromyces were dominant in most of microbial communities (14.467-95.941%). The functional compositions were sediment-dependent and more divergent than community reassemblies. Network and co-occurrence analysis suggested that acidophiles such as Acidisoma and Acidiphilium were gaining more positive relations in the long-term stress. The acidophilic taxa and genes involved in resistance to the acidification and toxicity of HBCDs were enriched, for example, bacteria Acidisoma and Acidiphilium, archaea Thermogymnomonas, and eukaryotes Nitzschia, and genes kdpC, odc1, polA, gst, and sod-2. These genes involved in oxidative stress response, energy metabolism, DNA damage repair, potassium transportation, and decarboxylation. It suggested that the microbial communities might cope with the stress from HBCDs and acidification via multiple pathways. The present research shed light on the evolution of microbial communities under the long-term stress of HBCDs contamination and acidification.

Keywords: Acid resistance; Adaptation; HBCDs; Microcosm; Toxicity.

MeSH terms

  • Archaea / genetics
  • Archaea / metabolism
  • Eukaryota / metabolism
  • Hydrocarbons, Brominated* / analysis
  • Microbiota*

Substances

  • hexabromocyclododecane
  • Hydrocarbons, Brominated