Increasing the Mechanical Stability of Polymer-Gold Interfacial Connection: A Parallel Covalent Strategy

ACS Macro Lett. 2023 Apr 18;12(4):421-427. doi: 10.1021/acsmacrolett.3c00058. Epub 2023 Mar 16.

Abstract

Thiol-gold (S-Au) chemistry has been widely used in coating and functionalizing gold surfaces because it is robust and highly efficient. However, recent studies have shown that the S-Au-based self-assembled monolayers can lead to significant instability under external mechanical loading (e.g., in a swelled polymer film). Such instability limits further applications of S-Au chemistry-based functional materials. Here, we report a surface-modifying procedure based on a parallel covalent strategy. By employing dendritic macromolecules as a "middle layer" between the gold surface and polymer, the interfacial connecting strength increased by at least 350% as revealed by atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS). The ultimate cleavage structure is confirmed to be an amide bond by control SMFS experiments, fluorescent microscopy, and dynamic force spectroscopy. This study/concept paves the way to prepare stable stimuli-responsive polymer brushes on solid surfaces and study mechanophores with high force stability.