In-vitro antigout potential of Alstonia scholaris flower, characterization and prospective ligand-receptor interaction of bioactive lead compound

Heliyon. 2023 Feb 28;9(3):e14093. doi: 10.1016/j.heliyon.2023.e14093. eCollection 2023 Mar.

Abstract

Gout is an arthropathic and inflammatory disease. The prevalence and incidence of such disease has risen in last decades. It is associated with life style thus it could be recognize as life style diseases. In the present study, the flower extract of Alstonia scholaris Linn R.Br., Flower was initially subjected to extraction, isolation which leads to purification of pure eight compounds. All these compounds were identified using various spectroscopic techniques. In-vitro Xanthine oxidase inhibition activity was performed to determine the antigout potential of lead compounds. Compound 8 showed significant activity among all i.e. 14.7 ± 0.43 as compare to standard allopurinol 6.77 ± 0.26. Accordingly, in-silico studies using Autodock vina 4 showed the ligand-protein interaction of luteolin with 3AX7. The docking simulations showed significant binding pocket sites of respective proteins 3AX7 with the least binding energy -10.2 kcal/mol. Consequently, molecular docking simulations for 100ns indicated robust evidence with their conformational structural interaction which serve as active sites for Lead compound. Principal Component Analysis indicated first three PCs capture 23.8%, 39%, and 49% of structural variance in protein. Therefore compound 8 could be consider for potential drug design and development in gout therapy.

Keywords: Alsonia scholaris flower; HREIMS; Molecular docking simulations; NMR; Xanthine oxidase enzyme.