MicroRNA-592 Inhibits the Growth of Ovarian Cancer Cells by Targeting ERBB3

Technol Cancer Res Treat. 2023 Jan-Dec:22:15330338231157156. doi: 10.1177/15330338231157156.

Abstract

Objectives: Ovarian cancer is the most lethal gynecologic malignancy, and targeted therapy for different pathological types and molecular phenotypes is urgent to be studied. Studies have shown that MicroRNA-592 (miR-592) plays an important negative regulatory role in the occurrence of gastrointestinal malignancies, breast cancer, non-small cell lung cancer, and glioma, but the expression of miR-592 in ovarian cancer and the mechanism of action are still unclear. Methods: The expressions of miR-592 were examined by RT-PCR and Western Blot. Cell viability and migratory capacity were detected by CCK-8 and transwell assay. TargetScan (http://www.targetscan.org) was analyzed to predict potential targets of miR-592. Then Dual-luciferase reporter gene assay was performed to verify the targeting relationship between miR-592 and ERBB3. A mouse xenograft model was applied to confirm the effect of miR-592. Results: In our study, we found that the expression of miR-592 is reduced in epithelial ovarian cancer tissues. The exogenous expression of miR-592 inhibits the proliferation, migration, and invasion in epithelial ovarian cancer tumor cells. Furthermore, the exogenous expression of miR-592 inhibits tumor growth in the nude mouse xenograft model. Therefore, miR-592 may play a role of tumor suppressor miRNA in the occurrence and development of ovarian cancer. Further experiments demonstrated that tumor-related ERBB3 is a target gene mediated by miRNA-592. The dual-luciferase reporter system was used to identify miRNA-592 target genes; qPCR and Western Blot were used to detect the expression of ERBB3. Mechanical experiments confirmed that miRNA-592 negatively regulated ERBB3.Conclusion: Together, these findings identify a heretofore unrecognized link between miR-592 and ERBB3 and suggest that targeting on miR-592 warrants attention as a novel and potential therapeutic strategy for ovarian cancer.

Keywords: ERBB3; MicroRNA-592; cell signaling; oncology; ovarian cancer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Carcinoma, Non-Small-Cell Lung* / genetics
  • Carcinoma, Ovarian Epithelial / genetics
  • Cell Line, Tumor
  • Cell Movement / genetics
  • Cell Proliferation / genetics
  • Female
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Lung Neoplasms* / genetics
  • Mice
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Ovarian Neoplasms* / pathology
  • Receptor, ErbB-3 / genetics

Substances

  • ERBB3 protein, human
  • MicroRNAs
  • MIRN592 microRNA, human
  • MIRN592 microRNA, mouse
  • Receptor, ErbB-3
  • ErbB3 protein, mouse