PEGylated Tween 80-functionalized chitosan-lipidic nano-vesicular hybrids for heightening nose-to-brain delivery and bioavailability of metoclopramide

Drug Deliv. 2023 Dec;30(1):2189112. doi: 10.1080/10717544.2023.2189112.

Abstract

A PEGylated Tween 80-functionalized chitosan-lipidic (PEG-T-Chito-Lip) nano-vesicular hybrid was developed for intranasal administration as an alternative delivery route to help improve the poor oral bioavailability of BCS class-III model/antiemetic (metoclopramide hydrochloride; MTC). The influence of varying levels of chitosan, cholesterol, PEG 600, and Tween 80 on the stability/release parameters of the formulated nanovesicles was optimized using Draper-Lin Design. Two optimized formulations (Opti-Max and Opti-Min) with both maximized and minimized MTC-release goals, were predicted, characterized, and proved their vesicular outline via light/electron microscopy, along with the mutual prompt/extended in-vitro release patterns. The dual-optimized MTC-loaded PEG-T-Chito-Lip nanovesicles were loaded in intranasal in-situ gel (ISG) and further underwent in-vivo pharmacokinetics/nose-to-brain delivery valuation on Sprague-Dawley rats. The absorption profiles in plasma (plasma-AUC0-∞) of the intranasal dual-optimized MTC-loaded nano-vesicular ISG formulation in pretreated rats were 2.95-fold and 1.64-fold more than rats pretreated with orally administered MTC and intranasally administered raw MTC-loaded ISG formulation, respectively. Interestingly, the brain-AUC0-∞ of the intranasal dual-optimized MTC-loaded ISG was 10 and 3 times more than brain-AUC0-∞ of the MTC-oral tablet and the intranasal raw MTC-loaded ISG, respectively. It was also revealed that the intranasal dual-optimized ISG significantly had the lowest liver-AUC0-∞ (862.19 ng.g-1.h-1) versus the MTC-oral tablet (5732.17 ng.g-1.h-1) and the intranasal raw MTC-loaded ISG (1799.69 ng.g-1.h-1). The brain/blood ratio profile for the intranasal dual-optimized ISG was significantly enhanced over all other MTC formulations (P < 0.05). Moreover, the 198.55% drug targeting efficiency, 75.26% nose-to-brain direct transport percentage, and 4.06 drug targeting index of the dual-optimized formulation were significantly higher than those of the raw MTC-loaded ISG formulation. The performance of the dual-optimized PEG-T-Chito-Lip nano-vesicular hybrids for intranasal administration evidenced MTC-improved bioavailability, circumvented hepatic metabolism, and enhanced brain targetability, with increased potentiality in heightening the convenience and compliance for patients.

Keywords: Lipidic-based nanovesicles; PEGylation; Tween 80 functionalization; bioavailability; nose-to-brain delivery; optimization.

MeSH terms

  • Administration, Intranasal
  • Animals
  • Biological Availability
  • Brain / metabolism
  • Chitosan* / metabolism
  • Drug Carriers / metabolism
  • Drug Delivery Systems
  • Lipids
  • Metoclopramide* / metabolism
  • Polysorbates
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Metoclopramide
  • Polysorbates
  • Chitosan
  • Lipids
  • Drug Carriers

Grants and funding

The author(s) reported there is no funding associated with the work featured in this article.