TREM2 as an independent predictor of poor prognosis promotes the migration via the PI3K/AKT axis in prostate cancer

Am J Transl Res. 2023 Feb 15;15(2):779-798. eCollection 2023.

Abstract

Objective: Prostate adenocarcinoma (PRAD) is one of the most common cancers, with high morbidity and mortality. Triggering receptors expressed on myeloid cells 2 (TREM2) is upregulated in various malignancies, however its effect on PRAD remains unknown. This study aimed to investigate the prognostic value of TREM2 in PRAD.

Methods: PRAD samples were collected from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), Oncomine, and the Human Protein Atlas (HPA) to analyze the differences in TREM2 expression between normal and tumor tissues. The influence of TREM2 on the clinicopathological characteristics and its prognostic value were evaluated using the Kaplan-Meier curve, Cox regression analysis, ROC (receiver operating characteristic) plot, and nomogram. Gene Ontology (GO), gene set enrichment analysis (GSEA), and protein-protein interaction (PPI) were conducted to screen biological functions and pathways. The relationship between TREM2 and tumor microenvironment (TME) characteristics was explored. The TREM2 expression in PRAD specimens and cell lines was assessed by immunohistochemistry staining and western blot. TREM2-specific siRNAs were used to evaluate the effects of TREM2 on cell function.

Results: TREM2 was upregulated and positively associated with poor clinicopathologic characteristics. Overexpression of TREM2 is an independent biomarker for the prognosis of PFI (progression-free interval). Moreover, TREM2 expression was positively correlated with various TME characteristics. Knockdown of TREM2 inhibited the migration of PRAD cell lines via the PI3K/AKT axis.

Conclusion: High TREM2 expression may represent a novel diagnostic and prognostic biomarker and serve as a potential target gene for PRAD therapy.

Keywords: Bioinformatics; TREM2; immune infiltrate; prognosis biomarker; prostate adenocarcinoma.