TurboID-based proteomic profiling of meiotic chromosome axes in Arabidopsis thaliana

Nat Plants. 2023 Apr;9(4):616-630. doi: 10.1038/s41477-023-01371-7. Epub 2023 Mar 13.

Abstract

During meiotic prophase I, sister chromatids are arranged in a loop-base array along a proteinaceous structure, called the meiotic chromosome axis. This structure is essential for synapsis and meiotic recombination progression and hence formation of genetically diverse gametes. Proteomic studies in plants aiming to unravel the composition and regulation of meiotic axes are constrained by limited meiotic cells embedded in floral organs. Here we report TurboID (TbID)-based proximity labelling (PL) in meiotic cells of Arabidopsis thaliana. TbID fusion to the two meiotic chromosome axis proteins ASY1 and ASY3 enabled the identification of their proximate 'interactomes' based on affinity purification coupled with mass spectrometry. We identified 39 ASY1 and/or ASY3 proximate candidates covering most known chromosome axis-related proteins. Functional studies of selected candidates demonstrate that not only known meiotic candidates but also new meiotic proteins were uncovered. Hence, TbID-based PL in meiotic cells enables the identification of chromosome axis proximate proteins in A. thaliana.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis Proteins* / metabolism
  • Arabidopsis* / genetics
  • Arabidopsis* / metabolism
  • Chromosomes / metabolism
  • Meiosis
  • Proteomics

Substances

  • Arabidopsis Proteins