Effect of thermal radiation on convective heat transfer in MHD boundary layer Carreau fluid with chemical reaction

Sci Rep. 2023 Mar 13;13(1):4117. doi: 10.1038/s41598-023-31151-4.

Abstract

The temperature dependent thermophysical fluid properties have numerous aspects in different industries and engineering processes in which heat transmission is based on fluid flow. For such heat transmission processes, heat transmission system is highly fluctuated with variation of viscosity. Thus, the aim of this study is to investigate the transfer of heat in magnetized Carreau fluid with chemical reaction and under influence of thermal radiation over nonlinear stretching/shrinking surface. Additionally, we have incorporated variable heat dependent thermophysical properties to analyze the heat transfer in magnetized Carreau fluid. Set of flow governing non linear PDE's are obtained using Carreau fluid tensor and boundary layer approximation (BLA) theory. Dimensionless set of ODE's are obtained using suitable similarity transforms. Shooting method in conjunction with Newton's method have been utilized to solve the problem. It is noted that when stretching [Formula: see text] is significant with strictly increasing mass suction [Formula: see text] shear stress rate increase with minor levels and sharp increase has been observed in Nusselt number, whereas in shrinking case [Formula: see text] shear stress and heat transfer coefficient values are improved raising the value of [Formula: see text] mass suction. Further, raising the values of power law index [Formula: see text] produce reduced skin friction over stretching surface [Formula: see text] while skin friction dramatically enhance in shrinking case [Formula: see text]. It is observed that raising the non-linearity [Formula: see text] values for stretching or shrinking, skin friction and Nusselt number considerably improved. Moreover, computational outcomes of the study are validated with already published previous results and the results obtained in this study are found in good agreement.