Guanxining injection alleviates fibrosis in heart failure mice and regulates SLC7A11/GPX4 axis

J Ethnopharmacol. 2023 Jun 28:310:116367. doi: 10.1016/j.jep.2023.116367. Epub 2023 Mar 11.

Abstract

Ethnopharmacological relevance: Radix et Rhizoma Salviae Miltiorrhizae (Salvia miltiorrhiza Bge., Lamiaceae, Danshen in Chinese) and Chuanxiong Rhizoma (rhizomes of Ligusticum chuanxiong Hort., Apiaceae, Chuanxiong in Chinese) both are important traditional Chinese medicine (TCM) for activating blood and eliminating stasis. Danshen-chuanxiong herb pair has been used for more than 600 years in China. Guanxinning injection (GXN) is a Chinese clinical prescription refined from aqueous extract of Danshen and Chuanxiong at the ratio of 1:1 (w/w). GXN has been mainly used in the clinical therapy of angina, heart failure (HF) and chronic kidney disease in China for almost twenty years.

Aim of the study: This study aimed to explore the role of GXN on renal fibrosis in heart failure mice and the regulation of GXN on SLC7A11/GPX4 axis.

Matarials and methods: The transverse aortic constriction model was used to mimic HF accompanied by kidney fibrosis model. GXN was administrated by tail vein injection in dose of 12.0, 6.0, 3.0 mL/kg, respectively. Telmisartan (6.1 mg/kg, gavage) was used as a positive control drug. Cardiac ultrasound indexes of ejection fraction (EF), cardiac output (CO), left ventricle volume (LV Vol), HF biomarker of pro-B type natriuretic peptide (Pro-BNP), kidney function index of serum creatinine (Scr), kidney fibrosis index of collagen volume fraction (CVF) and connective tissue growth factor (CTGF) were evaluated and contrasted. Metabolomic method was employed to analyze the endogenous metabolites changes in kidneys. Besides, contents of catalase (CAT), xanthine oxidase (XOD), nitricoxidesynthase (NOS), glutathione peroxidase 4 (GPX4), the x(c)(-) cysteine/glutamate antiporter (SLC7A11) and ferritin heavy chain (FTH1) in kidney were quantitatively analyzed. In addition, ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to analyze the chemical composition of GXN and network pharmacology was used to predict possible mechanisms and the active ingredients of GXN.

Results: The cardiac function indexes of EF, CO and LV Vol, kidney functional indicators of Scr, the degree of kidney fibrosis indicators CVF and CTGF were all relieved to different extent for the model mice treated with GXN. 21 differential metabolites involved in redox regulation, energy metabolism, organic acid metabolism, nucleotide metabolism, etc were identified. Aspartic acid, homocysteine, glycine, and serine, methionine, purine, phenylalanine and tyrosine metabolism were found to be the core redox metabolic pathways regulated by GXN. Furthermore, GXN were found to increase CAT content, upregulate GPX4, SLC7A11 and FTH1 expression in kidney significantly. Not only that, GXN also showed good effect in down-regulating XOD and NOS contents in kidney. Besides, 35 chemical constituents were initially identified in GXN. Active ingredients of GXN-targets-related enzymes/transporters-metabolites network was established to find out that GPX4 was a core protein for GXN and the top 10 active ingredients with the most relevant to renal protective effects of GXN were rosmarinic acid, caffeic acid, ferulic acid, senkyunolide E, protocatechualdehyde, protocatechuic acid, danshensu, L-Ile, vanillic acid, salvianolic acid A.

Conclusion: GXN could significantly maintain cardiac function and alleviate the progression of fibrosis in the kidney for HF mice, and the mechanisms of action were related to regulating redox metabolism of aspartate, glycine, serine, and cystine metabolism and SLC7A11/GPX4 axis in kidney. The cardio-renal protective effect of GXN may be attributed to multi-components like rosmarinic acid, caffeic acid, ferulic acid, senkyunolide E, protocatechualdehyde, protocatechuic acid, danshensu, L-Ile, vanillic acid, salvianolic acid A et al.

Keywords: Chronic heart failure; Guanxinning injection; Kidney fibrosis; Metabolomics; SLC7A11/GPX4 axis.

MeSH terms

  • Animals
  • Chromatography, Liquid
  • Drugs, Chinese Herbal* / chemistry
  • Drugs, Chinese Herbal* / pharmacology
  • Drugs, Chinese Herbal* / therapeutic use
  • Fibrosis
  • Glycine
  • Heart Failure* / drug therapy
  • Mice
  • Rosmarinic Acid
  • Salvia miltiorrhiza* / chemistry
  • Tandem Mass Spectrometry
  • Vanillic Acid / analysis

Substances

  • salvianolic acid A
  • ferulic acid
  • caffeic acid
  • 3,4-dihydroxyphenyllactic acid
  • protocatechualdehyde
  • protocatechuic acid
  • Vanillic Acid
  • Drugs, Chinese Herbal
  • Glycine