Design of molecular MNC dual-atom catalysts for nitrogen reduction starting from surface state analysis

J Colloid Interface Sci. 2023 Jun 15:640:983-989. doi: 10.1016/j.jcis.2023.03.033. Epub 2023 Mar 8.

Abstract

Under electrocatalytic conditions, the state of a catalyst surface (e.g., adsorbate coverage) can be very different from a pristine form due to the existing conversion equilibrium between water and H- and O-containing adsorbates. Dismissing the analysis of the catalyst surface state under operating conditionsmay lead to misleading guidelines for experiments. Given that confirming the actual active site of the catalyst under operating conditions is indispensable to providing practical guidance for experiments, herein, we analyzed the relations between the Gibbs free energy and the potential of a new type of molecular metal-nitrogen-carbon (MNC) dual-atom catalysts (DACs) with a unique 5 N-coordination environment, by spin-polarized density functional theory (DFT) and surface Pourbaix diagram calculations. Analyzing the derived surface Pourbaix diagrams, we screened out three catalysts, N3-Ni-Ni-N2, N3-Co-Ni-N2, and N3-Ni-Co-N2, to further study the activity of nitrogen reduction reaction (NRR). The results display that N3-Co-Ni-N2 is a promising NRR catalyst with a relatively low ΔG of 0.49 eV and slow kinetics of the competing hydrogen evolution. This work proposes a new strategy to guide DAC experiments more precisely: the analysis of the surface occupancy state of the catalysts under electrochemical conditions should be performed before activity analysis.

Keywords: Dual-atom catalyst; Nitrogen reduction; Surface states; surface Pourbaix diagrams.