Pulsed Photothermal Heterogeneous Catalysis

ACS Catal. 2023 Feb 22;13(5):3419-3432. doi: 10.1021/acscatal.2c05435. eCollection 2023 Mar 3.

Abstract

Anthropogenic climate change urgently calls for the greening and intensification of the chemical industry. Most chemical reactors make use of catalysts to increase their conversion yields, but their operation at steady-state temperatures limits their rate, selectivity, and energy efficiency. Here, we show how to break such a steady-state paradigm using ultrashort light pulses and photothermal nanoparticle arrays to modulate the temperature of catalytic sites at timescales typical of chemical processes. Using heat dissipation and time-dependent microkinetic modeling for a number of catalytic landscapes, we numerically demonstrate that pulsed photothermal catalysis can result in a favorable, dynamic mode of operation with higher energy efficiency, higher catalyst activity than for any steady-state temperature, reactor operation at room temperature, resilience against catalyst poisons, and access to adsorbed reagent distributions that are normally out of reach. Our work identifies the key experimental parameters controlling reaction rates in pulsed heterogeneous catalysis and provides specific recommendations to explore its potential in real experiments, paving the way to a more energy-efficient and process-intensive operation of catalytic reactors.