FineFDR: Fine-grained Taxonomy-specific False Discovery Rates Control in Metaproteomics

Proceedings (IEEE Int Conf Bioinformatics Biomed). 2022 Dec:2022:287-292. doi: 10.1109/bibm55620.2022.9995401. Epub 2023 Jan 2.

Abstract

Microbial community proteomics, also termed metaproteomics, investigates all proteins expressed by a microbiota. Tandem mass spectrometry (MS/MS) is the typical method for identifying proteins in metaproteomics, which involves searching the mass spectra against a protein sequence database. A major post-analysis step is controlling the false discovery rate (FDR), i.e., the ratio of false positives to the total number of annotations. The current popular target-decoy FDR estimation method treats all the peptides and proteins equally and overlooks that they could have varied probabilities of being identified. In this study, we report FineFDR, a framework for FDR assessment at fine-grained levels with taxonomy information considered. FineFDR groups the identified peptide-spectrum matches, peptides, and proteins from different taxonomic units and estimates the FDR in each group separately. Empirical experiments on the simulated and real-world data sets demonstrate that our FineFDR achieved higher precision and more peptide and protein identifications when compared to the state-of-the-art methods, such as Comet, Percolator, TIDD, and Tailor. FineFDR is freely available under the GNU GPL license at https://github.com/Biocomputing-Research-Group/FDR.

Keywords: Metaproteomics; Target-decoy Search; Taxonomy-specific FDR Control.