Fabp7 Is Required for Normal Sleep Suppression and Anxiety-Associated Phenotype following Single-Prolonged Stress in Mice

Neuroglia. 2022 Jun;3(2):73-83. doi: 10.3390/neuroglia3020005. Epub 2022 May 13.

Abstract

Humans with post-traumatic stress disorder (PTSD) exhibit sleep disturbances that include insomnia, nightmares, and enhanced daytime sleepiness. Sleep disturbances are considered a hallmark feature of PTSD; however, little is known about the cellular and molecular mechanisms regulating trauma-induced sleep disorders. Using a rodent model of PTSD called "Single Prolonged Stress" (SPS) we examined the requirement of the brain-type fatty acid binding protein Fabp7, an astrocyte expressed lipid-signaling molecule, in mediating trauma-induced sleep disturbances. We measured baseline sleep/wake parameters and then exposed Fabp7 knock-out (KO) and wild-type (WT) C57BL/6N genetic background control animals to SPS. Sleep and wake measurements were obtained immediately following the initial trauma exposure of SPS, and again 7 days later. We found that active-phase (dark period) wakefulness was similar in KO and WT at baseline and immediately following SPS; however, it was significantly increased after 7 days. These effects were opposite in the inactive-phase (light period), where KOs exhibited increased wake in baseline and following SPS, but returned to WT levels after 7 days. To examine the effects of Fabp7 on unconditioned anxiety following trauma, we exposed KO and WT mice to the light-dark box test before and after SPS. Prior to SPS, KO and WT mice spent similar amounts of time in the lit compartment. Following SPS, KO mice spent significantly more time in the lit compartment compared to WT mice. These results demonstrate that mutations in an astrocyte-expressed gene (Fabp7) influence changes in stress-dependent sleep disturbances and associated anxiety behavior.

Keywords: anxiolytic; blbp; fear; glia; lipid signaling; stress.