Regional transportation and influence of atmospheric aerosols triggered by Tonga volcanic eruption

Environ Pollut. 2023 May 15:325:121429. doi: 10.1016/j.envpol.2023.121429. Epub 2023 Mar 9.

Abstract

A cataclysmic submarine volcano at Hunga Tonga-HungaHa'apai (HTHH) near Tonga, erupted violently on 15 January 2022, which injected a plume of ash cloud soaring into the upper atmosphere. In this study, we examined the regional transportation and potential influence of atmospheric aerosols triggered by HTHH volcano, based on active and passive satellite products, ground-based observations, multi-source reanalysis datasets and atmospheric radiative transfer model. The results indicated that about 0.7 Tg (1 Tg = 109 kg) sulfur dioxide (SO2) gas were emitted into stratosphere from the HTHH volcano, and were lifted to an altitude of 30 km. The regional averaged SO2 columnar content over the western Tonga increased by 10-36 Dobson Units (DU), and the mean aerosol optical thickness (AOT) retrieved from satellite products increased to 0.25-0.34. The stratospheric AOT values caused by HTHH emissions increased to 0.03, 0.20, and 0.23 on 16, 17, and 19 January, respectively, accounting for 1.5%, 21.9%, and 31.1% of total AOT. Ground-based observations also showed an AOT increase of 0.25-0.43, with the maximum daily average of 0.46-0.71 appeared on 17 January. The volcanic aerosols were remarkably dominated by fine-mode particles and posed strong light-scattering and hygroscopic abilities. Consequently, the mean downward surface net shortwave radiative flux was reduced by 2.45-11.9 Wm-2 on different regional scales, and the surface temperature decreased by 0.16-0.42 K. The maximum aerosol extinction coefficient was 0.51 km-1 appeared at 27 km, which resulted in an instantaneous shortwave heating rate of 1.80 Khour-1. These volcanic materials stayed stable in the stratosphere and completed one circle around the earth within 15 days. This would exert a profound influence on the energy budget, water vapor and ozone exchange in the stratosphere, which deserves to be further studied.

Keywords: Tonga volcanic eruption,; aerosol optical thickness, shortwave heating rate; volcanic aerosol.

MeSH terms

  • Aerosols
  • Atmosphere* / analysis
  • Sulfur Dioxide
  • Tonga
  • Volcanic Eruptions*

Substances

  • Sulfur Dioxide
  • Aerosols