Dissolved organic matter composition and fluorescence characteristics of the river affected by coal mine drainage

Environ Sci Pollut Res Int. 2023 Apr;30(19):55799-55815. doi: 10.1007/s11356-023-26211-1. Epub 2023 Mar 11.

Abstract

Coal mine drainage (CMD) discharged into surface waters results in serious environmental pollution risk to rivers, lakes, and reservoirs. Coal mine drainage generally contains a variety of organic matter and heavy metals due to coal mining activities. Dissolved organic matter (DOM) plays an important role in the physicochemical and biological processes of many aquatic ecosystems. In this study, the investigations were carried out in the dry and wet seasons in 2021 to assess the characteristics of DOM compounds in coal mine drainage and the CMD-affected river. The results indicated that the pH of CMD-affected river pressed close to coal mine drainage. Besides, coal mine drainage lowered DO by 36% and increased total dissolved solids by 19% in the CMD-affected river. Coal mine drainage decreased absorption coefficient a(350) and absorption spectral slope S275-295 of DOM in the CMD-affected river; hence, DOM molecular size increased with decreasing S275-295. Three-dimensional fluorescence excitation-emission matrix spectroscopy and parallel factor analysis identified humic-like C1, tryptophan-like C2, and tyrosine-like C3 in the CMD-affected river and coal mine drainage. DOM in the CMD-affected river mainly originated from microbial and terrestrial sources, with strong endogenous characteristics. The ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry analysis revealed that coal mine drainage had a higher relative abundance of CHO (44.79%), with a higher unsaturation degree of DOM. Coal mine drainage decreased the AImod,wa, DBEwa (double bond equivalents), Owa, Nwa, and Swa values and increased the relative abundance of the O3S1 species with DBE of 3 and carbons number range of 15-17 at the CMD inlet to the river channel. Moreover, coal mine drainage with the higher protein content increased the protein content of water at the CMD inlet to the river channel and the downstream river. DOM compositions and proprieties in coal mine drainage were investigated to further understand the influence of organic matter on heavy metals in future study.

Keywords: Coal mine drainage; Dissolved organic matter; Fourier transform ion cyclotron resonance mass spectrometry; River affected by coal mine drainage; Three-dimensional fluorescence spectroscopy.

MeSH terms

  • China
  • Coal
  • Dissolved Organic Matter*
  • Ecosystem*
  • Lakes
  • Rivers / chemistry
  • Spectrometry, Fluorescence

Substances

  • Dissolved Organic Matter
  • Coal