X-ray Single Exposure Imaging and Image Processing of Objects with High Absorption Ratio

Sensors (Basel). 2023 Feb 23;23(5):2498. doi: 10.3390/s23052498.

Abstract

The dynamic range of an X-ray digital imaging system is very important when detecting objects with a high absorption ratio. In this paper, a ray source filter is used to filter the low-energy ray components which have no penetrating power to the high absorptivity object to reduce the X-ray integral intensity. This enables the effective imaging of the high absorptivity objects and avoids the image saturation of low absorptivity objects, thus achieving single exposure imaging of high absorption ratio objects. However, this method will reduce the image contrast and weaken the image structure information. Therefore, this paper proposes a contrast enhancement method for X-ray images based on Retinex. Firstly, based on Retinex theory, the multi-scale residual decomposition network decomposes the image into an illumination component and a reflection component. Then, the contrast of the illumination component is enhanced through the U-Net model with the global-local attention mechanism, and the reflection component is enhanced in detail using the anisotropic diffused residual dense network. Finally, the enhanced illumination component and the reflected component are fused. The results show that the proposed method can effectively enhance the contrast in X-ray single exposure images of the high absorption ratio objects, and can fully display the structure information of images on devices with low dynamic range.

Keywords: X-ray imaging; high absorption ratio; image contrast enhancement; single-exposure.

Grants and funding

This research received no external funding.