Optimization of 3D Cooling Channels in Plastic Injection Molds by Taguchi-Integrated Principal Component Analysis (PCA)

Polymers (Basel). 2023 Feb 21;15(5):1080. doi: 10.3390/polym15051080.

Abstract

Injection molding has become an increasingly widely used method in the production of plastic parts. The injection process can be separated into five steps: mold closure, filling, packing, cooling, and product ejection. Before the melted plastic is loaded into the mold, the mold needs to be raised to a specified temperature, in order to increase the mold's filling capacity and improve the resultant product quality. One of the easy methods used to control a mold's temperature is to provide hot water through a cooling channel in the mold, to raise the temperature. In addition, this channel can be used for cooling the mold with cool fluid. This is simple, effective, and cost efficient, involving uncomplicated products. To improve the heating effectiveness of the hot water, a conformal cooling-channel design is considered in this paper. Through heat-transfer simulation using the CFX module in the Ansys software, an optimal cooling channel was defined according to the simulation result, using the Taguchi method integrated with principal component analysis. The comparison of traditional vs. conformal cooling channels revealed higher temperature rises in the first 100 s in both molds. During heating, conformal cooling produced higher temperatures compared with traditional cooling. Conformal cooling demonstrated better performance, with average temperature peaking at 58.78 °C and a range of 63.4 °C (max) to 54.66 °C (min). Traditional cooling resulted in an average steady-state temperature of 56.63 °C and a range of 61.74 °C (max) to 53.18 °C (min). Finally, the simulation results were verified experimentally.

Keywords: 3D cooling channel; 3D metal printing; cooling channel optimization; injection molding; mold temperature control.