Functional Bimetal/Carbon Composites Co/Zr@AC for Pesticide Atrazine Removal from Water

Molecules. 2023 Feb 22;28(5):2071. doi: 10.3390/molecules28052071.

Abstract

Atrazine is a toxic and refractory herbicide that poses threats to human health and the ecological environment. In order to efficiently remove atrazine from water, a novel material, Co/Zr@AC, was developed. This novel material is prepared by loading two metal elements, cobalt and zirconium, onto activated carbon (AC) through solution impregnation and high-temperature calcination. The morphology and structure of the modified material were characterized, and its ability to remove atrazine was evaluated. The results showed that Co/Zr@AC had a large specific surface area and formed new adsorption functional groups when the mass fraction ratio of Co2+:Zr4+ in the impregnating solution was 1:2, the immersion time was 5.0 h, the calcination temperature was 500 °C, and the calcination time was 4.0 h. During the adsorption experiment on 10 mg/L atrazine, the maximum adsorption capacity of Co/Zr@AC was shown to be 112.75 mg/g and the maximum removal rate was shown to be 97.5% after 90 min of the reaction at a solution pH of 4.0, temperature of 25 °C, and Co/Zr@AC concentration of 60.0 mg/L. In the kinetic study, the adsorption followed the pseudo-second-order kinetic model (R2 = 0.999). The fitting effects of Langmuir and Freundlich isotherms were excellent, indicating that the process of Co/Zr@AC adsorbing atrazine also conformed to two isotherm models, so the adsorption of atrazine by Co/Zr@AC had multiple effects including chemical adsorption, mono-molecular layer adsorption, and multi-molecular layer adsorption. After five experimental cycles, the atrazine removal rate was 93.9%, indicating that Co/Zr@AC is stable in water and is an excellent novel material that can be used repeatedly.

Keywords: activated carbon; adsorption; atrazine; cobalt; zirconium.