Homogenization of Extrusion Billets of a Novel Al-Mg-Si-Cu Alloy with Increased Copper Content

Materials (Basel). 2023 Mar 3;16(5):2091. doi: 10.3390/ma16052091.

Abstract

Within the present work the homogenization of DC-cast (direct chill-cast) extrusion billets of Al-Mg-Si-Cu alloy was investigated. The alloy is characterized by higher Cu content than currently applied in 6xxx series. The aim of the work was analysis of billets homogenization conditions enabling maximum dissolution of soluble phases during heating and soaking as well as their re-precipitation during cooling in form of particles capable for rapid dissolution during subsequent processes. The material was subjected to laboratory homogenization and the microstructural effects were assessed on the basis of DSC (differential scanning calorimetry) tests, SEM/EDS (scanning electron microscopy/energy-dispersive spectroscopy) investigations and XRD (X-ray diffraction) analyses. The proposed homogenization scheme with three soaking stages enabled full dissolution of Q-Al5Cu2Mg8Si6 and θ-Al2Cu phases. The β-Mg2Si phase was not dissolved completely during soaking, but its amount was significantly reduced. Fast cooling from homogenization was needed to refine β-Mg2Si phase particles, but despite this in the microstructure coarse Q-Al5Cu2Mg8Si6 phase particles were found. Thus, rapid billets heating may lead to incipient melting at the temperature of about 545 °C and the careful selection of billets preheating and extrusion conditions was found necessary.

Keywords: Al-Mg-Si-Cu alloys; cooling from homogenization; extrusion billets; homogenization soaking.