Investigations of Photoluminescence Properties of CaxMg2-xSi2O6:yEu2+ (x = 0.5-1.25, y = 0.015-0.035) Phosphors

Materials (Basel). 2023 Mar 1;16(5):2032. doi: 10.3390/ma16052032.

Abstract

Previously, there were almost no relevant studies on developing the optimal CaxMg2-xSi2O6:yEu2+ phosphor composition for its finest optical properties. This study employs two steps to determine the optimal composition for CaxMg2-xSi2O6:yEu2+ phosphors. First, CaMgSi2O6:yEu2+ (y = 0.015, 0.020, 0.025, 0.030, 0.035) was used as the primary composition of specimens synthesised in a reducing atmosphere of 95% N2 + 5% H2 to investigate the effect of Eu2+ ions on the photoluminescence properties of each variant. The emission intensities of the entire photoluminescence excitation (PLE) and photoluminescence (PL) emission spectra of the CaMgSi2O6:yEu2+ phosphors initially increased as the concentration of the Eu2+ ions increased, peaking at y = 0.025. The cause of the variations across the entire PLE and PL spectra of all five CaMgSi2O6:yEu2+ phosphors was investigated. Because the CaMgSi2O6:0.025Eu2+ phosphor had the highest PLE and PL emission intensities, in the next step, CaxMg2-xSi2O6:0.025Eu2+ (x = 0.5, 0.75, 1.0, 1.25) was used as the primary composition to investigate the effect on the photoluminescence properties when the CaO content varied. We also show that the Ca content has an apparent effect on the photoluminescence properties of CaxMg2-xSi2O6:0.025Eu2+ phosphors, and the optimal phosphor composition is Ca0.75Mg1.25Si2O6:0.025Eu2+ because it has the largest PLE and PL values. X-ray diffraction (XRD) analyses of CaxMg2-xSi2O6:0.025Eu2+ phosphors were performed to identify the factors responsible for this outcome.

Keywords: Ca content; CaxMg2-xSi2O6:yEu2+; concentration quench effect; phosphors; photoluminescence properties.

Grants and funding

This research was supported by projects under Nos. MOST 110-2622-E-390-002, MOST 110-2221-E-390-020, and MOST 111-2221-E-390-018.