TiSiCN as Coatings Resistant to Corrosion and Neutron Activation

Materials (Basel). 2023 Feb 23;16(5):1835. doi: 10.3390/ma16051835.

Abstract

The aim of the present paper was to evaluate the effect of neutron activation on TiSiCN carbonitrides coatings prepared at different C/N ratios (0.4 for under stoichiometric and 1.6 for over stoichiometric). The coatings were prepared by cathodic arc deposition using one cathode constructed of Ti88 at.%-Si12 at.% (99.99% purity). The coatings were comparatively examined for elemental and phase composition, morphology, and anticorrosive properties in 3.5% NaCl solution. All the coatings exhibited f.c.c. solid solution structures and had a (111) preferred orientation. Under stoichiometric structure, they proved to be resistant to corrosive attack in 3.5% NaCl and of these coatings the TiSiCN was found to have the best corrosion resistance. From all tested coatings, TiSiCN have proven to be the most suitable candidates for operation under severe conditions that are present in nuclear applications (high temperature, corrosion, etc.).

Keywords: carbonitrides; corrosion resistance; crystal structure; neutron activation analysis; potentiodynamic polarization; surface morphology.