Silica-Fiber-Reinforced Composites for Microelectronic Applications: Effects of Curing Routes

Materials (Basel). 2023 Feb 22;16(5):1790. doi: 10.3390/ma16051790.

Abstract

For curing of fiber-reinforced epoxy composites, an alternative to thermal heating is the use of microwave energy, which cures quickly and consumes less energy. Employing thermal curing (TC) and microwave (MC) curing methods, we present a comparative study on the functional characteristics of fiber-reinforced composite for microelectronics. The composite prepregs, prepared from commercial silica fiber fabric/epoxy resin, were separately cured via thermal and microwave energy under curing conditions (temperature/time). The dielectric, structural, morphological, thermal, and mechanical properties of composite materials were investigated. Microwave cured composite showed a 1% lower dielectric constant, 21.5% lower dielectric loss factor, and 2.6% lower weight loss, than thermally cured one. Furthermore, the dynamic mechanical analysis (DMA) revealed a 20% increase in the storage and loss modulus along with a 15.5% increase in the glass transition temperature (Tg) of microwave-cured compared to thermally cured composite. The fourier transformation infrared spectroscopy (FTIR) showed similar spectra of both the composites; however, the microwave-cured composite exhibited higher tensile (15.4%), and compression strength (4.3%) than the thermally cured composite. These results illustrate that microwave-cured silica-fiber-reinforced composite exhibit superior electrical performance, thermal stability, and mechanical properties compared to thermally cured silica fiber/epoxy composite in a shorter time and the expense of less energy.

Keywords: dielectric properties; microwave curing; reinforced composites; thermal properties.

Grants and funding

This research received no external funding.