A Narrative Mini Review on Current Status of Hypoallergenic Wheat Development for IgE-Mediated Wheat Allergy, Wheat-Dependent Exercise-Induced Anaphylaxis

Foods. 2023 Feb 23;12(5):954. doi: 10.3390/foods12050954.

Abstract

Immunoglobulin E (IgE)-mediated food allergies to wheat that develop after school age typically shows a type of wheat-dependent exercise-induced anaphylaxis (WDEIA). At present, avoidance of wheat products or postprandial rest after ingesting wheat is recommended for patients with WDEIA, depending on the severity of the allergy symptoms. ω5-Gliadin has been identified as the major allergen in WDEIA. In addition, α/β-, γ-, and ω1,2-gliadins, high and low molecular weight-glutenins, and a few water-soluble wheat proteins have been identified as IgE-binding allergens in a small proportion of patients with IgE-mediated wheat allergies. A variety of approaches have been manufactured to develop hypoallergenic wheat products that can be consumed by patients with IgE-mediated wheat allergies. In order to analyze such approaches, and to contribute to the further improvement, this study outlined the current status of these hypoallergenic wheat productions, including wheat lines with a reduced allergenicity that are mostly constructed for the patients sensitized to ω5-gliadin, hypoallergenic wheat by enzymic degradation/ion exchanger deamidation, and hypoallergenic wheat by thioredoxin treatment. The wheat products obtained by these approaches significantly reduced the reactivity of Serum IgE in wheat-allergic patients. However, either these were not effective on some populations of the patients, or low-level IgE-reactivity to some allergens of the products was observed in the patients. These results highlight some of the difficulties faced in creating hypoallergenic wheat products or hypoallergenic wheat lines through either traditional breeding or biotechnology approaches in developing hypoallergenic wheat completely safe for all the patients allergic to wheat.

Keywords: deamidation; enzymic degradation; hypoallergenic wheat; thioredoxin; wheat-dependent exercise-induced anaphylaxis; ω5-gliadin.

Grants and funding

This work was supported by JSPS KAKENHI (Grant Number 20K08802 and 20K08774) and Grant from the Nipponham Foundation for the Future of Food.