Routine EWS Fusion Analysis in the Oncology Clinic to Identify Cancer-Specific Peptide Sequence Patterns That Span Breakpoints in Ewing Sarcoma and DSRCT

Cancers (Basel). 2023 Mar 6;15(5):1623. doi: 10.3390/cancers15051623.

Abstract

(1) Background: EWS fusion genes are associated with Ewing sarcoma and other Ewing family tumors including desmoplastic small round tumor, DSRCT. We utilize a clinical genomics workflow to reveal real-world frequencies of EWS fusion events, cataloging events that are similar, or divergent at the EWS breakpoint. (2) Methods: EWS fusion events from our next-generation sequencing panel (NGS) samples were first sorted by breakpoint or fusion junctions to map out the frequency of breakpoints. Fusion results were illustrated as in-frame fusion peptides involving EWS and a partner gene. (3) Results: From 2471 patient pool samples for fusion analysis at the Cleveland Clinic Molecular Pathology Laboratory, we identified 182 fusion samples evolved with the EWS gene. They are clustered in several breakpoints: chr22:29683123 (65.9%), and chr22:29688595 (2.7%). About 3/4 of Ewing sarcoma and DSRCT tumors have an identical EWS breakpoint motif at Exon 7 (SQQSSSYGQQ-) fused to a specific part of FLI1 (NPSYDSVRRG or-SSLLAYNTSS), ERG (NLPYEPPRRS), FEV (NPVGDGLFKD) or WT1 (SEKPYQCDFK). Our method also worked with Caris transcriptome data, too. Our primary clinical utility is to use this information to identify neoantigens for therapeutic purposes. (4) Conclusions and future perspectives: our method allows interpretation of what peptides result from the in-frame translation of EWS fusion junctions. These sequences, coupled with HLA-peptide binding data, are used to identify potential sequences of cancer-specific immunogenic peptides for Ewing sarcoma or DSRCT patients. This information may also be useful for immune monitoring (e.g., circulating T-cells with fusion-peptide specificity) to detect vaccine candidates, responses, or residual disease.

Keywords: EWS-ERG; EWS-FLI1; EWS-WT1; breakpoint; cancer-specific sequence; fusion gene analysis; information and education virtual visit; mRNA; next generation sequencing (NGS); polypeptide.