Detection of Hepatitis C virus RNA using a novel hybridization chain reaction method that competitively dampens cascade amplification

PLoS One. 2023 Mar 10;18(3):e0268917. doi: 10.1371/journal.pone.0268917. eCollection 2023.

Abstract

The hybridization chain reaction (HCR) is widely used for biosensing. However, HCR does not provide the required sensitivity. In this study, we reported a method to improve the sensitivity of HCR by dampening the cascade amplification. First, we designed a biosensor based on HCR, and an initiator DNA was used to trigger the cascade amplification. Optimization of the reaction was then performed, and the results showed that the limit of detection (LOD) for the initiator DNA was about 2.5 nM. Second, we designed a series of inhibitory DNAs to dampen the HCR cascade amplification, and DNA dampeners (50 nM) were applied in the presence of the DNA initiator (50 nM). One of the DNA dampeners (D5) showed the best inhibitory efficiency of greater than 80%. This was further applied at concentrations ranging from 0 nM to 10 nM to prohibit the HCR amplification caused by a 2.5 nM initiator DNA (the limit of detection for this initiator DNA). The results showed that 0.156 nM of D5 could significantly inhibit the signal amplification (p<0.05). Additionally, the limit of detection for the dampener D5 was 16 times lower than that for the initiator DNA. Based on this detection method, we achieved a detection limit as low as 0.625 nM for HCV-RNAs. In summary, we developed a novel method with improved sensitivity to detect the target designed to prohibit the HCR cascade. Overall, this method could be used to qualitatively detect the presence of single-stranded DNA/RNA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biosensing Techniques* / methods
  • DNA / genetics
  • Hepacivirus* / genetics
  • Hybridization, Genetic
  • Limit of Detection
  • Nucleic Acid Hybridization / methods
  • RNA

Substances

  • DNA
  • RNA

Grants and funding

This work was supported by the Fundamental Research Funds for the Central Universities (2242020K40130 & 2242020K10020), the National Science and Technology Major Project (No. 2020ZX09201015), National Natural Science Foundation of China (No. 81773624 & 81603016), and National Natural Science Foundation of Jiangsu Province (No. BE2017746 & BK20160706). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.