The effects of heading time on yield performance and HvGAMYB expression in spring barley subjected to drought

J Appl Genet. 2023 May;64(2):289-302. doi: 10.1007/s13353-023-00755-x. Epub 2023 Mar 10.

Abstract

In the lifetime of a plant, flowering is not only an essential part of the reproductive process but also a critical developmental stage that can be vulnerable to environmental stresses. To ensure survival during drought, plants accelerate the flowering process, and this response is known as "drought escape." HvGAMYB-transcription factor associated, among others, with flowering process and anther development in barley-has also an important role in developmental modification and yield performance in plants subjected to stressed conditions. Due to the fact that information about the mechanisms associated both with the flowering acceleration and the anther or pollen disruption is limited, the exploration of the potential HvGAMYB role in flower development may shed light on pollen and spike morphology formations in plants grown under unfavorable water conditions. The aim of this study was to characterize differences in responses to drought among early- and late-heading barley genotypes. These two subgroups of plants-differentiated in terms of phenology-were analyzed, and traits linked to plant phenotype, physiology, and yield were investigated. In our study, the drought stress reactions of two barley subgroups showed a wide range of diversity in terms of yield performance, anther morphology, chlorophyll fluorescence kinetics, and pollen viability. The studied plants exhibited different yield performances under control and drought conditions. Moreover, the random distribution of genotypes on the biplot showing variability of OJIP parameters in the second developmental point of our investigation revealed that prolonged drought stress caused that among early- and late-heading plants, the studied genotypes exhibited different responses to applied stress conditions. The results of this study also showed that the HvGAMYB expression level was correlated positively with traits associated with lateral spike morphology in the second developmental point of this investigation, which showed that this association occurred only under prolonged drought and highlighted the drought stress duration effect on the HvGAMYB expression level.

Keywords: Barley; Drought; Earliness; Gibberellins; HvGAMYB.

MeSH terms

  • Droughts
  • Genotype
  • Hordeum* / genetics
  • Phenotype
  • Water

Substances

  • Water