Resting-State EEG Reveals Abnormal Microstate Characteristics of Depression with Insomnia

Brain Topogr. 2024 May;37(3):388-396. doi: 10.1007/s10548-023-00949-w. Epub 2023 Mar 9.

Abstract

Previous research revealed various aspects of resting-state EEG for depression and insomnia. However, the EEG characteristics of depressed subjects with insomnia are rarely studied, especially EEG microstates that capture the dynamic activities of the large-scale brain network. To fill these research gaps, the present study collected resting-state EEG data from 32 subclinical depression subjects with insomnia (SDI), 31 subclinical depression subjects without insomnia (SD), and 32 healthy controls (HCs). Four topographic maps were generated from clean EEG data after clustering and rearrangement. Temporal characteristics were obtained for statistical analysis, including cross-group variance analysis (ANOVA) and intra-group correlation analysis. In our study, the global clustering of all individuals in the EEG microstate analysis revealed the four previously discovered categories of microstates (A, B, C, and D). The occurrence of microstate B was lower in SDI than in SD and HC subjects. The correlation analysis showed that the total Pittsburgh Sleep Quality Index (PSQI) score negatively correlated with the occurrence of microstate C in SDI (r = - 0.415, p < 0.05). Conversely, there was a positive correlation between Self-rating Depression Scale (SDS) scores and the duration of microstate C in SD (r = 0.359, p < 0.05). These results indicate that microstates reflect altered large-scale brain network dynamics in subclinical populations. Abnormalities in the visual network corresponding to microstate B are an electrophysiological characteristic of subclinical individuals with symptoms of depressive insomnia. Further investigation is needed for microstate changes related to high arousal and emotional problems in people suffering from depression and insomnia.

Keywords: Depression; EEG Microstate; Insomnia; Temporal dynamics.

MeSH terms

  • Brain / physiology
  • Brain Mapping* / methods
  • Depression
  • Electroencephalography
  • Humans
  • Sleep Initiation and Maintenance Disorders*