Light-induced O2-dependent aliphatic carbon-carbon (C-C) bond cleavage in bipyridine-ligated Co(II) chlorodiketonate complexes

Dalton Trans. 2023 Mar 28;52(13):4152-4160. doi: 10.1039/d2dt03727k.

Abstract

Mononuclear bipyridine (bpy)-ligated Co(II) chlorodiketonate complexes [(bpy)2Co(R-PhC(O)C(Cl)C(O)R-Ph)]ClO4 (R = -H (8), -CH3 (9), and -OCH3 (10)), were prepared, characterized and investigated for O2-dependent aliphatic C-C bond cleavage reactivity. Complexes 8-10 have a distorted psuedo-octahedral geometry. 1H NMR spectra of 8-10 in CD3CN show signals for the coordinated diketonate moiety, and signals suggesting ligand exchange reactivity leading to the formation of a small amount of [(bpy)3Co](ClO4)2 (11) in solution. While 8-10 are air stable at room temperature, illumination at 350 nm results in oxidative cleavage reactivity within the diketonate moiety leading to the formation of 1,3-diphenylpropanetrione, benzoic acid, benzoic anhydride, and benzil. Illumination of 8 under 18O2 results in a high level of 18O incorporation (>80%) in the benzoate anion. The product mixture, high level of 18O incorporation, and additional mechanistic studies suggest a reaction sequence wherein light-induced reactivity leads to the formation of a triketone intermediate that undergoes either oxidative C-C bond cleavage or benzoyl migration promoted by a bipyridine-ligated Co(II) or Co(III) fragment.