Preparation and Study of Polyvinyl Alcohol Gel Structures with Acrylamide and 2-Acrylamido-2-methyl-1-propanesulfonic Acid for Application in Saline Oil Reservoirs for Profile Modification

ACS Appl Mater Interfaces. 2023 Mar 8. doi: 10.1021/acsami.2c22911. Online ahead of print.

Abstract

Polymer gels can be effectively applied to plug fractured reservoirs and carbonate cave strata. Herein, polyvinyl alcohol (PVA), acrylamide, and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) were used as raw materials to prepare interpenetrating three-dimensional network polymer gels using formation saltwater in the Tahe oilfield (Tarim Basin, NW China) as a solvent. The effect of AMPS concentration on the gelation properties of PVA in high-temperature formation saltwater was analyzed. Further, the effect of PVA concentration on the strength and viscoelastic properties of polymer gel was studied. The polymer gel could retain stable continuous entanglement at 130 °C and exhibited satisfactory thermal stability. Continuous step oscillation frequency tests showed that it exhibited an excellent self-healing performance. Scanning electron microscopy images of the simulated core by gel plugging showed that the polymer gel could firmly fill the porous media, indicating that the polymer gel exhibits excellent application prospects in oil and gas reservoirs under high-temperature and high-salinity conditions.

Keywords: core flooding; interpenetrating; polymer gel; profile modification; rheology; saline oil reservoir.