Microalgal cultivation characteristics using commercially available air-cushion packaging material as a photobioreactor

Sci Rep. 2023 Mar 7;13(1):3792. doi: 10.1038/s41598-023-30080-6.

Abstract

Air-cushion (AC) packaging has become widely used worldwide. ACs are air-filled, dual plastic packaging solutions commonly found surrounding and protecting items of value within shipping enclosures during transit. Herein, we report on a laboratory assessment employing ACs as a microalgal photobioreactor (PBR). Such a PBR inherently addresses many of the operational issues typically encountered with open raceway ponds and closed photobioreactors, such as evaporative water loss, external contamination, and predation. Using half-filled ACs, the performance of microalgal species Chlorella vulgaris, Nannochloropsis oculata, and Cyclotella cryptica (diatom) was examined and the ash-free dry cell weight and overall biomass productivity determined to be 2.39 g/L and 298.55 mg/L/day for N. oculata, 0.85 g/L and 141.36 mg/L/day for C. vulgaris, and 0.67 g/L and 96.08 mg/L/day for C. cryptica. Furthermore, maximum lipid productivity of 25.54 mg/L/day AFDCW and carbohydrate productivity of 53.69 mg/L/day AFDCW were achieved by C. cryptica, while maximum protein productivity of 247.42 mg/L/day AFDCW was attained by N. oculata. Data from this work will be useful in determining the applicability and life-cycle profile of repurposed and reused ACs as potential microalgal photobioreactors depending upon the end product of interest, scale utilized, and production costs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomass
  • Body Weight
  • Chlorella vulgaris*
  • Diatoms*
  • Microalgae*
  • Photobioreactors