The Fabrication, Properties, and Application of a Printed Green Ag NWs-Based Flexible Electrode and Circuit

ACS Appl Mater Interfaces. 2023 Mar 7. doi: 10.1021/acsami.2c20270. Online ahead of print.

Abstract

A suitable conductive ink for office inkjet printers is important for the convenient design of flexible electrodes for triboelectric nanogenerators (TENG). Ag nanowires (Ag NWs) easily printed with an average short length of 1.65 μm were synthesized by using soluble NaCl as a growth regulator and adjusting the amount of chloride ion. The water-based Ag NWs ink with a low solid content of 1% but with low resistivity was produced. The printed flexible Ag NWs-based electrodes/circuits showed excellent conductivity with RS/R0 values kept at 1.03 after bending 50,000 times on PI substrate and an excellent anticlimate property in acidic conditions for 180 h on polyester woven fabric. The sheet resistance was reduced to 4.98 Ω/sqr heated at 30-50 °C for 3 min by a blower due to the formed excellent conductive network when compared to Ag NPs-based electrodes. Finally, the integration of printed Ag NWs electrode and circuits was applied to the TENG, which can be used to predict a robot's out-of-balance direction by the change of the TENG signal. In all, a suitable conductive ink with a short length of Ag NWs was fabricated, and flexible electrodes/circuits can be conveniently and easily printed by office inkjet printers.

Keywords: Ag NWS conductive ink; coffee-ring effect; good flexibility; integration of electrode and circuit; office inkjet printers.