Reversing Immune Suppression and Potentiating Photothermal Immunotherapy via Bispecific Immune Checkpoint Inhibitor Loaded Hollow Polydopamine Nanospheres

ACS Appl Mater Interfaces. 2023 Mar 7. doi: 10.1021/acsami.2c19790. Online ahead of print.

Abstract

Despite the great achievements of immune checkpoint blockade (ICB) therapy on programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) axis, ICB monotherapy still faces obstacles in eradicating solid tumors due to the lack of tumor-associated antigens or tumor-specific cytotoxicity. Photothermal therapy (PTT) is a potential therapeutic modality because it can noninvasively kill tumor cells by thermal ablation and generate both tumor-specific cytotoxicity and immunogenicity, which holds great feasibility to improve the efficiency of ICB by providing complementary immunomodulation. Except for the PD-1/PD-L1 axis, the cluster of differentiation 47 (CD47)/signal regulatory protein alpha (SIRPα) pathway has been considered as a novel strategy of tumor cells to evade the surveillance of macrophages and inactivate the immune response of PD-L1 blockade therapy. Therefore, it is necessary to synergize the antitumor effect of dual-targeting PD-L1 and CD47. Although promising, the application of PD-L1/CD47 bispecific antibodies, especially in combination with PTT, remains a formidable problem, due to the low objective response, activity loss at relatively high temperature, or nonvisualization. Herein, instead of using antibodies, we use MK-8628 (MK) to down-regulate both PD-L1 and CD47 simultaneously through halting the active transcription of oncogene c-MYC, leading to elicitation of the immune response. The hollow polydopamine (HPDA) nanospheres are introduced as a biocompatible nanoplatform with high loading capacity and magnetic resonance imaging (MRI) ability to deliver MK and induce PTT (HPDA@MK). Compared to preinjection, HPDA@MK exhibits the strongest MRI signal at 6 h postintravenous injection to guide the precise combined treatment time. However, due to the local delivery and controlled release of inhibitors, HPDA@MK down-regulates c-MYC/PD-L1/CD47, promotes the activation and recruitment of cytotoxic T cells, regulates the M2 macrophages polarization in tumor sites, and especially boosts the combined therapeutic efficacy. Collectively, our work presents a simple but distinctive approach for c-MYC/PD-L1/CD47-targeted immunotherapy combined with PTT that may provide a desirable and feasible strategy for the treatment of other clinical solid tumors.

Keywords: bispecific immune checkpoint inhibitor; hollow polydopamine nanospheres; immunotherapy; photothermal therapy.