Live Cell Imaging of Dynamic Processes in Adult Zebrafish Retinal Cross-Section Cultures

Methods Mol Biol. 2023:2636:367-388. doi: 10.1007/978-1-0716-3012-9_20.

Abstract

Following retinal injury, zebrafish possess the remarkable capacity to endogenously regenerate lost retinal neurons from Müller glia-derived neuronal progenitor cells. Additionally, neuronal cell types that are undamaged and persist in the injured retina are also produced. Thus, the zebrafish retina is an excellent system to study the integration of all neuronal cell types into an existing neuronal circuit. The few studies that examined axonal/dendritic outgrowth and the establishment of synaptic contacts by regenerated neurons predominantly utilized fixed tissue samples. We recently established a flatmount culture model to monitor Müller glia nuclear migration in real time by two-photon microscopy. However, in retinal flatmounts, z-stacks of the entire retinal z-dimension have to be acquired to image cells that extend through parts or the entirety of the neural retina, such as bipolar cells and Müller glia, respectively. Cellular processes with fast kinetics might thus be missed. Therefore, we generated a retinal cross-section culture from light-damaged zebrafish to image the entire Müller glia in one z-plane. Isolated dorsal retinal hemispheres were cut into two dorsal quarters and mounted with the cross-section view facing the coverslips of culture dishes, which allowed monitoring Müller glia nuclear migration using confocal microscopy. Confocal imaging of cross-section cultures is ultimately also applicable to live cell imaging of axon/dendrite formation of regenerated bipolar cells, while the flatmount culture model will be more suitable to monitor axon outgrowth of ganglion cells.

Keywords: Confocal microscopy; Interkinetic nuclear migration; Live cell imaging; Regeneration; Retina; Retinal slice culture; Zebrafish.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Microscopy, Confocal
  • Neuroglia
  • Retina
  • Retinal Neurons*
  • Zebrafish*