Increased oxygen uptake in well-trained runners during uphill high intensity running intervals: A randomized crossover testing

Front Physiol. 2023 Feb 16:14:1117314. doi: 10.3389/fphys.2023.1117314. eCollection 2023.

Abstract

The time spent above 90% of maximal oxygen uptake ( V ˙ O2max) during high-intensity interval training (HIIT) sessions is intended to be maximized to improve V ˙ O2max. Since uphill running serves as a promising means to increase metabolic cost, we compared even and moderately inclined running in terms of time ≥90% V ˙ O2max and its corresponding physiological surrogates. Seventeen well-trained runners (8 females & 9 males; 25.8 ± 6.8yrs; 1.75 ± 0.08m; 63.2 ± 8.4kg; V ˙ O2max: 63.3 ± 4.2 ml/min/kg) randomly completed both a horizontal (1% incline) and uphill (8% incline) HIIT protocol (4-times 5min, with 90s rest). Mean oxygen uptake ( V ˙ O2mean), peak oxygen uptake ( V ˙ O2peak), lactate, heart rate (HR), and perceived exertion (RPE) were measured. Uphill HIIT revealed higher (p ≤ 0.012; partial eta-squared (pes) ≥ 0.351) V ˙ O2mean (uphill: 3.3 ± 0.6 vs. horizontal: 3.2 ± 0.5 L/min; standardized mean difference (SMD) = 0.15), V ˙ O2peak (uphill: 4.0 ± 0.7 vs. horizontal: 3.8 ± 0.7 L/min; SMD = 0.19), and accumulated time ≥90% V ˙ O2max (uphill: 9.1 ± 4.6 vs. horizontal: 6.4 ± 4.0 min; SMD = 0.62) compared to even HIIT. Lactate, HR, and RPE responses did not show mode*time rANOVA interaction effects (p ≥ 0.097; pes ≤0.14). Compared to horizontal HIIT, moderate uphill HIIT revealed higher fractions of V ˙ O2max at comparable perceived efforts, heartrate and lactate response. Therefore, moderate uphill HiiT notably increased time spent above 90% V ˙ O2max.

Keywords: incline; injury; intervals; performance; running.

Grants and funding

We acknowledge the financial support of the German Research Foundation (DFG) and the Open Access Publication Fund of Bielefeld University for the article processing charge.