Monitoring the Formation of Nickel-Poor and Nickel-Rich Oxide Cathode Materials for Lithium-Ion Batteries with Synchrotron Radiation

Chem Mater. 2023 Jan 31;35(4):1514-1526. doi: 10.1021/acs.chemmater.2c02639. eCollection 2023 Feb 28.

Abstract

The syntheses of Ni-poor (NCM111, LiNi1/3Co1/3Mn1/3O2) and Ni-rich (NCM811 LiNi0.8Co0.1Mn0.1O2) lithium transition-metal oxides (space group R3̅m) from hydroxide precursors (Ni1/3Co1/3Mn1/3(OH)2, Ni0.8Co0.1Mn0.1(OH)2) are investigated using in situ synchrotron powder diffraction and near-edge X-ray absorption fine structure spectroscopy. The development of the layered structure of these two cathode materials proceeds via two utterly different reaction mechanisms. While the synthesis of NCM811 involves a rock salt-type intermediate phase, NCM111 reveals a layered structure throughout the entire synthesis. Moreover, the necessity and the impact of a preannealing step and a high-temperature holding step are discussed.