Global distribution of pesticides in freshwater resources and their remediation approaches

Environ Res. 2023 May 15:225:115605. doi: 10.1016/j.envres.2023.115605. Epub 2023 Mar 5.

Abstract

The role of pesticides in enhancing global agricultural production is magnificent. However, their unmanaged use threatens water resources and individual health. A significant pesticide concentration leaches to groundwater or reaches surface waters through runoff. Water contaminated with pesticides may cause acute or chronic toxicity to impacted populations and exert adverse environmental effects. It necessitates the monitoring and removing pesticides from water resources as prime global concerns. This work reviewed the global occurrences of pesticides in potable water and discussed the conventional and advanced technologies for the removal of pesticides. The concentration of pesticides highly varies in freshwater resources across the globe. The highest concentration of α-HCH (6.538 μg/L, at Yucatan, Mexico), lindane (6.08 μg/L at Chilka lake, Odisha, India), 2,4, DDT (0.90 μg/L, at Akkar, Lebanon), chlorpyrifos (9.1 μg/L, at Kota, Rajasthan, India), malathion (5.3 μg/L, at Kota, Rajasthan, India), atrazine (28.0 μg/L, at Venado Tuerto City, Argentina), endosulfan (0.78 μg/L, at Yavtmal, Maharashtra, India), parathion (4.17 μg/L, at Akkar, Lebanon), endrin (3.48 μg/L, at KwaZuln-Natl Province, South Africa) and imidacloprid (1.53 μg/L, at Son-La province, Vietnam) are reported. Pesticides can be significantly removed through physical, chemical, and biological treatment. Mycoremediation technology has the potential for up to 90% pesticide removal from water resources. Complete removal of the pesticides through a single biological treatment approach such as mycoremediation, phytoremediation, bioremediation, and microbial fuel cells is still a challenging task, however, the integration of two or more biological treatment approaches can attain complete removal of pesticides from water resources. Physical methods along with oxidation methods can be employed for complete removal of pesticides from drinking water.

Keywords: Biological treatment techniques; Chemical treatments techniques; Pesticides; Physical treatment techniques; Wastewater.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Drinking Water* / analysis
  • Environmental Monitoring
  • Fresh Water
  • India
  • Pesticides* / analysis
  • Water Pollutants, Chemical* / analysis

Substances

  • Pesticides
  • Water Pollutants, Chemical
  • Drinking Water