Protection of electroactive biofilms against hypersaline shock by quorum sensing

Water Res. 2023 Apr 15:233:119823. doi: 10.1016/j.watres.2023.119823. Epub 2023 Mar 1.

Abstract

Quorum sensing (QS) is an ideal strategy for boosting the operating performance of electroactive biofilms (EABs), but its potential effects on the protection of electroactive biofilms against environmental shocks (e.g., hypersaline shock) have been rarely revealed. In this study, a QS signaling molecule, the N-(3-oxo-dodecanoyl)-L-homoserine lactone, was employed to promote the anti-shock property of the EABs against extreme saline shock. The maximum current density of the QS-regulated biofilm recovered to 0.17 mA/cm2 after 10% salinity exposure, which was much higher than those of its counterparts. The laser scanning confocal microscope confirmed a thicker and more compact biofilm with the presence of the QS signaling molecule. The extracellular polymeric substances (EPS) might play a crucial role in the anti-shocking behaviors, as the polysaccharides in EPS of QS-biofilm had doubled compared to the groups with acylase (the QS quencher). The microbial community analysis indicated that the QS molecule enriched the relative abundance of key species including Pseudomonas sp. and Geobacter sp., which were both beneficial to the stability and electroactivity of the biofilms. The functional genes related to the bacterial community were also up-regulated with the presence of the QS molecule. These results highlight the importance of QS effects in protecting electroactive biofilm under extreme environmental shock, which provides effective and feasible strategies for the future development of microbial electrochemical technologies.

Keywords: Electroactive biofilms; Extracellular polymeric substances; Hypersaline shock; Protective strategy; Quorum sensing.

MeSH terms

  • Bacteria
  • Biofilms*
  • Lactones
  • Pseudomonas
  • Quorum Sensing*

Substances

  • Lactones