Crystal structure and characterization of the sulfamethazine-piperidine salt

Acta Crystallogr C Struct Chem. 2023 Mar 1;79(Pt 3):71-76. doi: 10.1107/S2053229622012050. Epub 2022 Feb 27.

Abstract

Sulfamethazine [N1-(4,6-dimethylpyrimidin-2-yl)sulfanilamide] is an antimicrobial drug that possesses functional groups capable of acting as hydrogen-bond donors and acceptors, which make it a suitable supramolecular building block for the formation of cocrystals and salts. We report here the crystal structure and solid-state characterization of the 1:1 salt piperidinium sulfamethazinate (PPD+·SUL-, C5H12N+·C12H13N4O2S-) (I). The salt was obtained by the solvent-assisted grinding method and was characterized by IR spectroscopy, powder X-ray diffraction, solid-state 13C NMR spectroscopy and thermal analysis [differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)]. Salt I crystallized in the monoclinic space group P21/n and showed a 1:1 stoichiometry revealing proton transfer from SUL to PPD to form salt I. The PPD+ and SUL- ions are connected by N-H+...O and N-H+...N interactions. The self-assembly of SUL- anions displays the amine-sulfa C(8) motif. The supramolecular architecture of salt I revealed the formation of interconnected supramolecular sheets.

Keywords: IR spectroscopy; crystal structure; piperidine; proton transfer; solid-state 13C NMR; solvent-assisted grinding; sulfamethazine; thermal analysis.